Respuesta :

step 1

Find the hypotenuse of the right triangle

applying Pythagorean theorem

c^2=2^2+3^2

c^2=4+9

[tex]c=\sqrt[]{13}[/tex]

step 2

Find sin(theta)

we have

[tex]\sin (\theta)=\frac{2}{\sqrt[]{13}}[/tex]

simplify

[tex]\sin (\theta)=\frac{2}{\sqrt[]{13}}=\frac{2\sqrt[\square]{13}}{13}[/tex]

opposite side divided by the hypotenuse

step 3

Find cos(theta)

[tex]\cos (\theta)=\frac{3}{\sqrt[\square]{13}}[/tex]

adjacent side divided by the hypotenuse

simplify

[tex]\cos (\theta)=\frac{3}{\sqrt[\square]{13}}=\frac{3\sqrt[]{13}}{13}[/tex]

step 4

find tan(theta)

[tex]\tan (\theta)=\frac{2}{3}[/tex]

opposite side divided by the adjacent side

step 5

find cot(theta)

[tex]\cot (\theta)=\frac{1}{\tan (\theta)}=\frac{3}{2}[/tex]

adjacent side divided by the opposite side

step 6

Find sec(theta)

[tex]\sec (\theta)=\frac{1}{\cos (\theta)}=\frac{\sqrt[]{13}}{3}[/tex]

hypotenuse divided by the adjacent side

step 7

Find csc(theta)

[tex]\csc (\theta)=\frac{1}{\sin (\theta)}=\frac{\sqrt[]{13}}{2}[/tex]

hypotenuse divided by the opposite side