Respuesta :

The given expression can be rewritten as

[tex]\sqrt[]{-169}=\sqrt[]{-1\times13\times13}[/tex]

which is equivalent to

[tex]\sqrt[]{-169}=\sqrt[]{-1}\times\sqrt[]{13^2}[/tex]

By the definition of imaginary number

[tex]\sqrt[]{-1}=i[/tex]

and

[tex]\sqrt[]{13^2}=13[/tex]

the answer is:

[tex]\sqrt[]{-169}=13i[/tex]

which corresponds to option C