Respuesta :

EXPLANATION

Given the function:

[tex]-3x^3-15x^2+12x+60[/tex]

Factor out common term -3:

-3(x^3 -5x^2 -4x -20)

Factor x^3 -5x^2-4x-20:

[tex]=(x^3-5x^2)+(-4x-20)[/tex]

Factor out -4 from -4x - 20:

-4x - 20

Rewrite 20 as 4*5:

=-4x - 4*5

Factor out common term -4:

=-4(x+5)

Factor out x^2 from x^3 + 5x^2:

Apply exponent rule: a^(b+c)= a^b*a^c

x^3=xx^2

=xx^2 + 5x^2

Factor out common term x^2:

=x^2(x+5)

=-4(x+5) + x^2(x+5)

Factor out common term x+5

=(x+5)(x^2-4)

Factor x^2-4:

Rewrite 4 as 2^2:

=x^2-2^2

Apply difference of two squares formula:

[tex]x^2-2^2=(x+2)(x-2)[/tex]

The resultant expression is:

[tex]=3(x+5)(x+2)(x-2)[/tex]

So, the zeros are:

(-5,0) (-2,0) (2,0)