Respuesta :

Answer:

Explanation:

Given the function;

[tex]f(x)=\log _4x[/tex]

To be able to plot the graph of the above function, let's choose values for x and determine the corresponding f(x) values;

When x = 1;

[tex]\begin{gathered} f(1)=\log _41 \\ =0 \end{gathered}[/tex]

When x = 2;

[tex]\begin{gathered} f(2)=\log _42 \\ =\frac{1}{2} \\ =0.5 \end{gathered}[/tex]

When x = 4;

[tex]\begin{gathered} f(4)=\log _44 \\ =1 \end{gathered}[/tex]

Let's go ahead and determine the inverse of f(x) following the below steps;

Step 1: Replace f(x) with y;

[tex]y=\log _4x[/tex]

Step 2: Interchange the positions of x and y;

[tex]x=\log _4y[/tex]

Step 3: Solve for y;

[tex]\begin{gathered} 4^x=y \\ y=4^x \end{gathered}[/tex]

Step 4: Replace y with f^-1(x);

[tex]f^{-1}(x)=4^x[/tex]

To graph the above function, let's also choose values for x and determine the corresponding f^-1(x) values;

When x = -4;

[tex]\begin{gathered} f^{-1}(-4)=4^{-4} \\ =\frac{1}{4^4} \\ =\frac{1}{256} \\ =0.004 \end{gathered}[/tex]

When x = 0;

[tex]\begin{gathered} f^{-1}(0)=4^0 \\ =1 \end{gathered}[/tex]

When x = 1;

[tex]\begin{gathered} f^{-1}(1)=4^1=4 \\ \end{gathered}[/tex]

When x = 2;

[tex]f^{-1}(2)=4^2=16[/tex]

See the below graph of the f(x) and f^-1(x);

Ver imagen AlphonzoZ273925
Ver imagen AlphonzoZ273925