Respuesta :

Step 1

Given;

[tex]0.8(10-x)=36[/tex]

Required; To find the value of x

Step 2

Use the distributive law to expand the bracket

[tex]a(b+c)=(a\times b)+(a\times c)[/tex][tex](0.8\times10)+(0.8\times(-x))=36[/tex][tex]\begin{gathered} 8+(_{}-0.8x)=36 \\ Bring\text{ like terms together} \\ -0.8x=36-8 \\ -0.8x=28 \\ \frac{-0.8x}{-0.8}=\frac{28}{-0.8} \\ x=-35 \\ \end{gathered}[/tex]

Hence, the value of x = -35