,As given by the question
There are given that the value
[tex]\frac{dr}{dt}=1.7\text{ and r=39.8 and A(r)=}\pi(r)^2[/tex]Now,
First find the differentiation of the value of A(r) with respect to r
So,
[tex]\begin{gathered} \text{ A(r)=}\pi(r)^2 \\ \frac{d\text{A(r)}}{dx}=2r\pi \end{gathered}[/tex]Then,
Put the value of r into the given equation
So,
[tex]\begin{gathered} \frac{d\text{A(r)}}{dt}=2r\pi \\ \frac{d\text{A(r)}}{dt}=2(39.8)\pi \\ \frac{d\text{A(r)}}{dt}=79.6\pi \end{gathered}[/tex]Now,
From the given chain rule
[tex]\frac{dA}{dt}=\frac{dA}{dr}\times\frac{dr}{dt}[/tex]Then,
Put all the values into the above equation
So,
[tex]\begin{gathered} \frac{dA}{dt}=\frac{dA}{dr}\times\frac{dr}{dt} \\ \frac{dA}{dt}=79.6\pi\times1.7 \\ \frac{dA}{dt}=135.32\pi \end{gathered}[/tex]Hence, the correct option is B.