Given the relation
[tex]y=3x-4[/tex]Explanation
The inverse of the function can be seen below.
[tex]\begin{gathered} \mathrm{A\:function\:g\:is\:the\:inverse\:of\:function\:f\:if\:for}\:y=f\left(x\right),\:\:x=g\left(y\right)\: \\ y=3x-4 \\ Replace\text{ x with y} \\ x=3y-4 \\ solve\text{ for y} \\ 3y=x+4 \\ y=\frac{x+4}{3} \end{gathered}[/tex]We will now plot the function of the above;
Therefore, the four points contained in the inverse is
Answer
[tex]\begin{gathered} a)(-10-2) \\ b)(-4,0) \\ c)(0,\frac{4}{3}) \\ d)(2,2) \end{gathered}[/tex]