(a)
The function
[tex](A\circ r)(36)[/tex]
means that the input of the function is 36 and the output is the value that we get when we input 36 onto the function r which is put on the function A.
(c)
Let's find the composite function
[tex](A\circ r)=\pi(5.25\sqrt[]{t})^2[/tex]
Now, we find the value of (A o r) (36):
[tex]\begin{gathered} (A\circ r)(36)=\pi(5.25\sqrt[]{36})^2 \\ =\pi(5.25(6))^2 \\ =3117.25 \end{gathered}[/tex]
So the size of contamination is approximately 3117.25 sq. m.
(d)
We want the time (t) when the size of the contamination would be 6250. Let's find it:
[tex]\begin{gathered} (A\circ r)=\pi(5.25\sqrt[]{t})^2 \\ 6250=\pi(5.25\sqrt[]{t})^2 \\ \frac{6250}{\pi}=(5.25\sqrt[]{t})^2 \\ 5.25\sqrt[]{t}=\sqrt[]{\frac{6250}{\pi}} \\ \sqrt[]{t}=\frac{\sqrt[]{\frac{6250}{\pi}}}{5.25} \\ t=(\frac{\sqrt[]{\frac{6250}{\pi}}}{5.25})^2 \\ t=(\frac{\frac{\sqrt[]{6250}}{\sqrt[]{\pi}}}{5.25})^2 \\ t=\frac{(\frac{\sqrt[]{6250}}{\sqrt[]{\pi}})^2}{(5.25)^2} \\ t=\frac{\frac{6250}{\pi}}{27.5625} \\ t\approx72.18 \end{gathered}[/tex]Answer - About 72.18 hours