Respuesta :

The converse of Basic Proportionality Theorem: If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

From the sketch,

[tex]\frac{CD}{DA}=\frac{CE}{EB}[/tex]

Take the reciprocal

[tex]\frac{DA}{CD}=\frac{EB}{CE}[/tex]

[tex]\text{Add 1 TO BOTH SIDES}[/tex]

[tex]\frac{DA}{CD}+1=\frac{EB}{CE}+1[/tex]

Any number divided by itself is 1, so we can replace 1 with CD/CD or CE/CE

so that

[tex]\frac{CD}{CD}+\frac{DA}{CD}=\frac{CE}{CE}+\frac{EB}{CE}[/tex]

Combine terms using our common denominator

[tex]\frac{CD+DA}{CD}=\frac{CE+EB}{CE}[/tex]

from the diagram, we can see that

CA=CD+DA

and

CB=CE+EB

Then

[tex]\frac{CA}{CD}=\frac{CB}{CE}[/tex]

Since the triangles have SAS for triangle similarity.

This means that

[tex]\text{Triangle ABD is similar to Triangle }CDE[/tex]

Ver imagen KarmelaQ44088