Given:
The initial matchsticks used: 3
We noticed that they increased by 4 or the common difference is 4, so they are
3,7, 11
We use arithmetic sequence formula:
[tex]\begin{gathered} a_n=a_1\text{ + }(n-1)\text{ d} \\ \text{where:} \\ a_1\text{ = first term} \\ d=\text{ }common\text{ difference} \end{gathered}[/tex]
We plug in what we know:
[tex]\begin{gathered} a_{n\text{ }}=a_{1_{}}\text{ + (n-1) d} \\ \text{= 3 + (n-1) 4} \\ \text{Simplify} \\ \text{= 3+ 4n-4} \\ \text{=4n-1} \end{gathered}[/tex]
Therefore, the nth figure will take 4n-1 matchsticks to build.