Question 3(Multiple Choice Worth 2 points)(07.02 MC)Which of the following represents vector w = -45i + 28j in trigonometric form? Round 0 to the nearest degree.Ow=53cos 32°i + 53sin 32°jOw= 53c0s 148°i + 53sin 148°jOw=35sin 32°i + 35cos 32°jOw= 35sin 148°İ + 35c0s 148°)Question 4(Multiple Choice Worth 2 points)

Respuesta :

Step 1. The vector that we have is:

[tex]\vec{w}=-45i+28j[/tex]

This vector is in the form

[tex]\vec{w}=ai+bj[/tex]

where

[tex]\begin{gathered} a=-45 \\ b=28 \end{gathered}[/tex]

And we need to find the trigonometric form of the vector.

Step 2. To find the trigonometric form we use this formula:

[tex]\vec{w}=|w|cos\theta i+|w|sin\theta j[/tex]

Where |w| is the length of the vector and theta is the angle.

Step 3. Finding |w|, the length of the vector:

[tex]|w|=\sqrt{a^2+b^2}[/tex]

in this case:

[tex]|w|=\sqrt{(-45)^2+28^2}[/tex]

Solving the operations the result is:

[tex]\begin{gathered} \lvert w\rvert=\sqrt{2025+284} \\ |w|=53 \end{gathered}[/tex]

Step 4. Now, we find the angle using:

[tex]\theta=\tan^{-1}(\frac{b}{a})[/tex]

In this case:

[tex]\theta=\tan^{-1}(\frac{28}{-45})[/tex]

Solving the operations and rounding to the nearest tenth of a degree:

[tex]\theta=-32[/tex]

Step 5. Going back to the formula from step 2:

[tex]\vec{w}=\lvert w\rvert cos\theta\imaginaryI+\lvert w\rvert s\imaginaryI n\theta j[/tex]

Substituting |w| and theta:

[tex]\vec{w}=53cos(-32)\imaginaryI+53s\imaginaryI n(-32)j[/tex]

We can either leave the result as it is, or use the following properties of the cosine and sine to simplify:

[tex]\begin{gathered} cos(-A)=cosA \\ sin(-A)=-sinA \end{gathered}[/tex]

And the result is simplified as follows:

[tex]\vec{w}=53cos(32)\imaginaryI-53s\imaginaryI n(32)j[/tex]

Answer:

[tex]\vec{w}=53cos(32)\imaginaryI-53s\imaginaryI n(32)j[/tex]