SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: write the given values
[tex]\begin{gathered} P=12000 \\ R=\frac{6}{100}=0.06 \\ t=6\text{ years} \\ n=4\text{ since it is compounded quarterly} \end{gathered}[/tex]STEP 2: Write the formula for Amount
[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]Where:
A=final amount
P=initial principal balance
r=interest rate
n=number of times interest applied per time period
t=number of time periods elapsed
STEP 3: Find the compounded amount
[tex]\begin{gathered} A=12000(1+\frac{0.06}{4})^{4\cdot6} \\ A=12000(1+0.015)^{24} \\ A=12000(1.015)^{24} \\ A=12000\cdot1.429502812 \\ A=17154.03374 \\ A\approx17154.03 \end{gathered}[/tex]Hence, the amount after 6 years will be $17154.03