Respuesta :

The formula for the monthly payments is:

[tex]M=P\cdot\frac{\frac{r}{12}\cdot(1+\frac{r}{12})^n}{(1+\frac{r}{12})^n-1}\text{.}[/tex]

Where:

• M = monthly payments,

,

• P = principal amount = $19300,

,

• r = interest rate in decimals = 6.1% = 0.061,

• n = # of years = 3.

Replacing the data of the problem in the formula above, we get:

[tex]M=19300\cdot\frac{\frac{0.061}{12}\cdot(1+\frac{0.061}{12})^3}{(1+\frac{0.061}{12})^3-1}\text{.}[/tex]

Answer

[tex]M=19300\cdot\frac{\frac{0.061}{12}\cdot(1+\frac{0.061}{12})^3}{(1+\frac{0.061}{12})^3-1}\text{.}[/tex]