Respuesta :

Given:

There is a figure given in the question

Required:

We need to find the surface area of given figure of pyramid

Explanation:

First we need to find the side of base square

use tan function

[tex]\begin{gathered} \tan30=\frac{SM}{DM} \\ \\ \frac{1}{\sqrt{3}}=\frac{6}{DM} \\ \\ DM=6\sqrt{3} \end{gathered}[/tex]

now to find the side of base square is

[tex]DC=2DM=12\sqrt{3}[/tex]

The surface area of pyramid is

[tex]TSA=\frac{1}{2}Pl+B[/tex]

where P is base of perimeter

l is the slant height which is 6 cm

B is the base area

now find P

[tex]P=4*12\sqrt{3}=48\sqrt{3}\text{ cm}[/tex]

now find B

[tex]B=12\sqrt{3}*12\sqrt{3}=432\text{ cm}^2[/tex]

now substitute all the values in the formula of Total surface area of pyramid

[tex]TSA=\frac{1}{2}Pl+B=\frac{1}{2}*48\sqrt{3}*6+432[/tex]

simplify as:

[tex]\begin{gathered} =249.4+432 \\ =681.4\text{ cm}^2 \end{gathered}[/tex]

Final answer:

Total surface area of given figure is 681.4 square cm