i need a little help. please use evidence and steps leading to answer. I asks to find the error in one or more of the steps and explain why its wrong

To identify the error in the procedure shown in the picture, it is important to remember the following:
[tex]\begin{gathered} (a+b)^2=a^2+2ab+b^2 \\ (a-b)^2=a^2-2ab+b^2 \end{gathered}[/tex]Keeping this on mind, you can solve the given equation as following:
1. Given:
[tex]\sqrt[]{5x}=x+2[/tex]2. Square both sides of the equation:
[tex]\begin{gathered} (\sqrt[]{5x})^2=(x+2)^2 \\ 5x=x^2+2(x)(2)+2^2 \\ 5x=x^2+4x+4 \end{gathered}[/tex]3. Move the the term on the left side to the right side and add like terms:
[tex]0=x^2-x+4[/tex]4. Apply the Quadratic formula to find "x":
[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \\ x=\frac{-(-1)\pm\sqrt[]{(-1)^2-4(1)(4)}}{2(1)} \\ \\ x_1=\frac{1}{2}(i-\sqrt[]{15)} \\ \\ x_2=\frac{1}{2}(i+\sqrt[]{15)}_{} \end{gathered}[/tex]Therefore, you can identify that the error is in Step C, because:
[tex](x+2)^2=x^2+4x+4[/tex]