Respuesta :

PROBLEM STATEMENT

To evaluate the value of

[tex]\tan (\alpha+\beta)[/tex]

GIVEN

[tex]\begin{gathered} \cos (\alpha+\beta)=-\frac{528}{697} \\ \sin (\alpha+\beta)=\frac{455}{697} \\ \sin (\alpha)=\frac{40}{41} \\ \sin (\beta)=\frac{15}{17} \end{gathered}[/tex]

SOLUTION

Recall the trigonometric identity:

[tex]\tan (x)=\frac{\sin (x)}{\cos (x)}[/tex]

If we have

[tex]x=\alpha+\beta[/tex]

Therefore, we have that:

[tex]\tan (\alpha+\beta)=\frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)}[/tex]

Substituting for the values of sin and cos, we have:

[tex]\tan (\alpha+\beta)=\frac{\frac{455}{697}}{-\frac{528}{697}}[/tex]

Rewriting, we have:

[tex]\begin{gathered} \tan (\alpha+\beta)=-\frac{455}{697}\div\frac{528}{697} \\ \tan (\alpha+\beta)=-\frac{455}{697}\times\frac{697}{528} \\ \tan (\alpha+\beta)=-\frac{455}{528} \end{gathered}[/tex]

ANSWER

[tex]\tan (\alpha+\beta)=-\frac{455}{528}[/tex]