Respuesta :

Answer:

To prove:

Cos⁴x - Sin⁴x = Cos2x​

we get,

Consider, (Left hand side (LHS))

[tex]\cos^4x-\sin^4x[/tex]

we know that,

[tex](a+b)(a-b)=a^2-b^2[/tex]

Usind this formula we get,

[tex]\cos^4x-\sin^4x=(\cos^2x)^2-(\sin^2x)^2[/tex][tex]=(\cos^2x+\sin^2x)(\cos^2x-\sin^2x)[/tex]

we know that,

[tex]\begin{gathered} \cos2x=\cos^2x-\sin^2x \\ \cos^2x+\sin^2x=1 \end{gathered}[/tex]

Substitute the values we get,

[tex]=(1)(\cos2x)[/tex][tex]\cos^4x-\sin^4x=\cos2x[/tex]

Hence proved.