Respuesta :

Given the triangle ABC, you know that:

[tex]\begin{gathered} AB=10 \\ AC=6 \\ BC=8 \end{gathered}[/tex]

You can identify that the small square in the vertex C of the triangle is a Right Angle (an angle that measures 90 degrees). Therefore, you have to find the tangent of the other two angles:

[tex]\begin{gathered} \angle A \\ \angle B \end{gathered}[/tex]

By definition:

[tex]tan\theta=\frac{opposite}{adjacent}[/tex]

Then:

- For angle A, you can identify that:

[tex]\begin{gathered} \theta=A \\ opposite=BC=8 \\ adjacent=AC=6 \end{gathered}[/tex]

Therefore:

[tex]\begin{gathered} tan(A)=\frac{8}{6} \\ \\ tan(A)=\frac{4}{3} \end{gathered}[/tex]

- For angle B:

[tex]\begin{gathered} \theta=B \\ opposite=AC=6 \\ adjacent=BC=8 \end{gathered}[/tex]

Therefore, you get:

[tex]\begin{gathered} tan(B)=\frac{6}{8} \\ \\ tan(B)=\frac{3}{4} \end{gathered}[/tex]

Hence, the answer is:

[tex]\begin{gathered} tan(A)=\frac{4}{3} \\ \\ tan(B)=\frac{3}{4} \end{gathered}[/tex]