Respuesta :

[tex]6x-10y\ge9[/tex]

we simplify the expression to work easier

[tex]\begin{gathered} 6x\ge9+10y \\ 6x-9\ge10y \\ \frac{6x-9}{10}\ge y \end{gathered}[/tex]

now we check each point replacing the coordinates and checking the inequality

A.

[tex]\begin{gathered} \frac{6(-1)-9}{10}\ge(1) \\ \\ \frac{-6-9}{10}\ge1 \\ \\ -\frac{15}{10}\ge1 \\ \\ -1.5\ge1 \end{gathered}[/tex]

A is wrong because -1.5 isnt greater than 1 , so the inequality is wrong

B.

[tex]\begin{gathered} \frac{6(-3)-9}{10}\ge(4) \\ \\ \frac{-18-9}{10}\ge4 \\ \\ \frac{-27}{10}\ge4 \\ \\ -2.7\ge4 \end{gathered}[/tex]

B is wrong because -2.7 isnt greater than 4

C.

[tex]\begin{gathered} \frac{6(2)-9}{10}\ge(1) \\ \\ \frac{12-9}{10}\ge1 \\ \\ \frac{3}{10}\ge1 \\ \\ 0.3\ge1 \end{gathered}[/tex]

C is wrong because 0.3 isnt greater than 1

D.

[tex]\begin{gathered} \frac{6(4)-9}{10}\ge(-2) \\ \\ \frac{24-9}{10}\ge-2 \\ \\ \frac{15}{10}\ge-2 \\ \\ 1.5\ge-2 \end{gathered}[/tex]

D is right because 1.5 is grreater than -2

E.

[tex]\begin{gathered} \frac{6(2)-9}{10}\ge(8) \\ \\ \frac{12-9}{10}\ge8 \\ \\ \frac{3}{10}\ge8 \\ \\ 0.3\ge8 \end{gathered}[/tex]

E is wrong because 0.3 isnt greater than 8

F.

[tex]\begin{gathered} \frac{6(5)-9}{10}\ge(2) \\ \\ \frac{30-9}{10}\ge2 \\ \\ \frac{21}{10}\ge2 \\ \\ 2.1\ge2 \end{gathered}[/tex]

F is Right because 2.1 is greater than 2