we simplify the expression to work easier
[tex]\begin{gathered} 6x\ge9+10y \\ 6x-9\ge10y \\ \frac{6x-9}{10}\ge y \end{gathered}[/tex]now we check each point replacing the coordinates and checking the inequality
A.
[tex]\begin{gathered} \frac{6(-1)-9}{10}\ge(1) \\ \\ \frac{-6-9}{10}\ge1 \\ \\ -\frac{15}{10}\ge1 \\ \\ -1.5\ge1 \end{gathered}[/tex]A is wrong because -1.5 isnt greater than 1 , so the inequality is wrong
B.
[tex]\begin{gathered} \frac{6(-3)-9}{10}\ge(4) \\ \\ \frac{-18-9}{10}\ge4 \\ \\ \frac{-27}{10}\ge4 \\ \\ -2.7\ge4 \end{gathered}[/tex]B is wrong because -2.7 isnt greater than 4
C.
[tex]\begin{gathered} \frac{6(2)-9}{10}\ge(1) \\ \\ \frac{12-9}{10}\ge1 \\ \\ \frac{3}{10}\ge1 \\ \\ 0.3\ge1 \end{gathered}[/tex]C is wrong because 0.3 isnt greater than 1
D.
[tex]\begin{gathered} \frac{6(4)-9}{10}\ge(-2) \\ \\ \frac{24-9}{10}\ge-2 \\ \\ \frac{15}{10}\ge-2 \\ \\ 1.5\ge-2 \end{gathered}[/tex]D is right because 1.5 is grreater than -2
E.
[tex]\begin{gathered} \frac{6(2)-9}{10}\ge(8) \\ \\ \frac{12-9}{10}\ge8 \\ \\ \frac{3}{10}\ge8 \\ \\ 0.3\ge8 \end{gathered}[/tex]E is wrong because 0.3 isnt greater than 8
F.
[tex]\begin{gathered} \frac{6(5)-9}{10}\ge(2) \\ \\ \frac{30-9}{10}\ge2 \\ \\ \frac{21}{10}\ge2 \\ \\ 2.1\ge2 \end{gathered}[/tex]F is Right because 2.1 is greater than 2