Respuesta :

From the image above, I will sketching out a portion from it

Let me explain out I got 1.825

[tex]\frac{y-z}{2}=\frac{6.383-2.733}{2}=1.825[/tex]

Using the tangent of angles to solve for the angle a

The tangent of angles formula is,

[tex]tan\theta=\frac{Opposite}{Adjacent}[/tex]

Given

[tex]\begin{gathered} Opposite=1.825 \\ Adjacednt=9.033 \\ \theta=a \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} tana=\frac{1.825}{9.033} \\ \therefore a=tan^{-1}(\frac{1.825}{9.033})=11.42210963895^0\approx11.4^0\text{ \lparen nearest tenth\rparen} \end{gathered}[/tex]

Hence,

[tex]\angle a=11.4^0[/tex]

Ver imagen MaryanE47173
Ver imagen MaryanE47173