Respuesta :

EXPLANATION:

Given;

We are given the following equation of an ellipse;

[tex]9x^2+36x+4y^2-8y=-4[/tex]

Required;

We are required to graph the ellipse and state its center and vertices.

Step-by-step solution;

[tex]\begin{gathered} Re-write\text{ }in\text{ }standard\text{ }form: \\ \frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1 \end{gathered}[/tex]

We now have;

[tex]\begin{gathered} Our\text{ }ellipse\text{ }is\text{ }in\text{ }the\text{ }form: \\ \frac{(x-(-2)^2}{4}+\frac{(y-1)^2}{9}=1 \\ Hence: \\ \\ \frac{(x+2)^2}{2^2}+\frac{(y-1)^2}{3^2}=1 \end{gathered}[/tex]

With the center given as (h, k), we now have

[tex]Center=(-2,1)[/tex]

Also,

[tex]a=2,b=3[/tex]

Using a graphing tool, the graph would now appear as follows;

The vertices as shown in the graph are found at the point;

[tex]\begin{gathered} (h,k+b) \\ (h,k-b) \\ Hence: \\ (-2,1+3),(-2,1-3) \\ \\ Vertices=(-2,4),(-2,-2) \end{gathered}[/tex]

Therefore,

ANSWER:

[tex]\begin{gathered} Center=(-2,1) \\ \\ Vertices)=(-2,4),(-2-2) \end{gathered}[/tex]

Ver imagen ArchieO380727