Respuesta :

Based on the information given in the exercise, you can set up the following System of equations:

[tex]\begin{cases}3p-2q=4 \\ 7p-3q=1\end{cases}[/tex]

You can use the Substitution method to find the value of the variable "p" and the variable "q":

- Solve for "q" from the first equation:

[tex]\begin{gathered} 3p-2q=4 \\ -2q=4-3p \\ q=\frac{4}{-2}-(\frac{3p}{-2}) \\ \\ q=-2+\frac{3}{2}p \end{gathered}[/tex]

- Substitute the new equation into the second equation:

[tex]\begin{gathered} 7p-3q=1 \\ 7p-3(-2+\frac{3}{2}p)=1 \end{gathered}[/tex]

- Solve for "p":

[tex]\begin{gathered} 7p+6-\frac{9}{2}p=1 \\ \\ \frac{5}{2}p=1-6 \\ \\ 5p=(2)(-5) \\ \\ p=\frac{-10}{5} \\ \\ p=-2 \end{gathered}[/tex]

- Substitute the value of "p" into the equation

[tex]q=-2+\frac{3}{2}p[/tex]

And evaluate. Then:

[tex]\begin{gathered} q=-2+\frac{3}{2}(-2) \\ q=-2-3 \\ q=-5 \end{gathered}[/tex]

Now knowing the values of "p" and "q", you can substitute them into this expression:

[tex]4p-5q[/tex]

And then evaluate. So, you get:

[tex]4(-2)-5(-5)=-8+25=17[/tex]

Therefore:

[tex]4p-5q=17[/tex]

The answer is: Option D.