Given:
Roll a die.
Required:
We need to find the probability that rolling a 6 and rolling a number greater than 3.
Explanation:
A)
A die had six sides and numbered 1 to 6.
The sample space, S=(1,2,3,4,5,6)
[tex]n(S)=6[/tex]Let event A be rolling a 6.
A={6}.
[tex]n(A)=1[/tex]The probability that rolling a 6 is P(A).
[tex]P(A)=\frac{n(A)}{n(S)}[/tex][tex]P(A)=\frac{1}{6}[/tex]B)
Let B be the event of rolling a number greater than 3.
[tex]B=\lbrace4,5,6\rbrace[/tex][tex]n(B)=3[/tex]The probability of rolling a number greater than 3 is P(B).
[tex]P(B)=\frac{n(B)}{n(S)}[/tex][tex]P(B)=\frac{3}{6}[/tex][tex]P(B)=\frac{1}{2}[/tex]Final answer:
The probability of rolling a 6 is 1/6.
The probability of rolling a number greater than 3 is 1/2.