The magnitude of the force exerted by Block 2 takes into account the mass of Block 1 because it's above it, so the force must include both masses.
Use Newton's Second Law.
[tex]\Sigma F_y=ma[/tex][tex]\begin{gathered} N-W=(m_1+m_2)a \\ N-(m_1+m_2)g=(m_1+m_2)a_{} \\ N=(m_1+m_2)(g+a) \end{gathered}[/tex]
Use the given magnitudes to find the force N.
[tex]\begin{gathered} N=(2\operatorname{kg}+3\operatorname{kg})(9.8\cdot\frac{m}{s^2}+1.6\cdot\frac{m}{s^2}) \\ N=5\operatorname{kg}\cdot11.4\cdot\frac{m}{s^2} \\ N=57N \end{gathered}[/tex]
Therefore, the force exerted by Block 2 is 57 Newtons.