Answer:
The coordinates of the image are;
[tex]\begin{gathered} L^{\prime}=(-1,-3) \\ M^{\prime}=(-3,-7) \\ N^{\prime}=(3,-6) \end{gathered}[/tex]Explanation:
Given the coordinates of L,M and N as;
[tex]\begin{gathered} L=(3,-1) \\ M=(7,-3) \\ N=(6,3) \end{gathered}[/tex]A 90 degree clockwise rotation can be represented as;
[tex](x,y)\rightarrow(y,-x)[/tex]Applying this rule to the given coordinates we have;
[tex]\begin{gathered} L(3,-1)\rightarrow L^{\prime}(-1,-3) \\ M(7,-3)\rightarrow M^{\prime}(-3,-7) \\ N(6,3)\rightarrow N^{\prime}(3,-6) \end{gathered}[/tex]Therefore, the coordinates of the image are;
[tex]\begin{gathered} L^{\prime}=(-1,-3) \\ M^{\prime}=(-3,-7) \\ N^{\prime}=(3,-6) \end{gathered}[/tex]