Draw ALMN with vertices L(3,-1), M(7,-3), and N(6,3). Find the coordinates of the vertices after a 90° rotation about the origin and about each of the points L, M, and N. what are the coordinates of the points after a 90° rotation about the origin? L=? M=? N=?

Respuesta :

Answer:

The coordinates of the image are;

[tex]\begin{gathered} L^{\prime}=(-1,-3) \\ M^{\prime}=(-3,-7) \\ N^{\prime}=(3,-6) \end{gathered}[/tex]

Explanation:

Given the coordinates of L,M and N as;

[tex]\begin{gathered} L=(3,-1) \\ M=(7,-3) \\ N=(6,3) \end{gathered}[/tex]

A 90 degree clockwise rotation can be represented as;

[tex](x,y)\rightarrow(y,-x)[/tex]

Applying this rule to the given coordinates we have;

[tex]\begin{gathered} L(3,-1)\rightarrow L^{\prime}(-1,-3) \\ M(7,-3)\rightarrow M^{\prime}(-3,-7) \\ N(6,3)\rightarrow N^{\prime}(3,-6) \end{gathered}[/tex]

Therefore, the coordinates of the image are;

[tex]\begin{gathered} L^{\prime}=(-1,-3) \\ M^{\prime}=(-3,-7) \\ N^{\prime}=(3,-6) \end{gathered}[/tex]