Respuesta :

ANSWER

[tex]\frac{dy}{dx}\text{ = }\frac{-5}{(4x-5)^2}[/tex]

EXPLANATION

We want to differentiate y given:

[tex]y\text{ = }\frac{x}{4x\text{ - 5}}[/tex]

To differentiate fractions as this, we first spllit the numerator and denominator as:

U = x

V = 4x - 5

Now, differentiate them separately.

dU/dx = 1

dV/dx = 4

Now, use formula:

[tex]\frac{dy}{dx}\text{ =}\frac{V\frac{du}{dx}\text{ - U}\frac{dV}{dx}}{V^2}[/tex]

So, let us put those values in there:

[tex]\begin{gathered} \frac{dy}{dx}\text{ = }\frac{(4x\text{ - 5) }\cdot\text{ 1 - (x }\cdot\text{ 4)}}{(4x-5)^2} \\ \frac{dy}{dx}\text{ = }\frac{4x\text{ - 5 - 4x}}{(4x-5)^2} \\ \frac{dy}{dx}\text{ = }\frac{-5}{(4x-5)^2} \end{gathered}[/tex]

That is the answer