Where are the minimum and maximum values for f(x) = sin x + 1 on the interval [0, 2π]?A. min:z =OB. min:x=OC. min:z =max:x= = 0, 2πOD. min:z = 0, π, 2π max: z =Reset Selectionmax: 1 =2 2max:z = 0, π, 2π

Given the function:
[tex]f(x)=sinx+1[/tex]Let's find the minimum and maximum values over the interval [0, 2π].
Let's first find the derivative of the function:
[tex]f^{\prime}(x)=cosx[/tex]Now set the derivative to 0 and solve for x:
[tex]\begin{gathered} cosx=0 \\ \\ \text{ Take the inverse cosine of both sides:} \\ x=cos^{-1}(0) \\ \\ x=\frac{\pi}{2} \end{gathered}[/tex]The cosine function is positive in quadrants I and IV, to find the reference angle(minimum), subtract the first solution from 2π:
[tex]\begin{gathered} x=2\pi-\frac{\pi}{2} \\ \\ x=\frac{2(2\pi)-\pi}{2} \\ \\ x=\frac{4\pi-\pi}{2} \\ \\ x=\frac{3\pi}{2} \end{gathered}[/tex]Plug in the values in the function to determine the minimum and maximum:
[tex]\begin{gathered} f(\frac{\pi}{2})=sin(\frac{\pi}{2})+1=1+1=2 \\ \\ \\ f(\frac{3\pi}{2})=sin(\frac{3\pi}{2})+1=-1+1=0 \end{gathered}[/tex]Therefore, we have the following:
Minimum occurs at: x = 3π/2
Maximum occurs at: x = π/2
ANSWER:
[tex][/tex]