Respuesta :

Given the function:

[tex]f(x)=-7x^2+700x[/tex]

It is a parabola of the form:

[tex]y=ax^2+bx+c[/tex]

Then the parameters of the given parabola are:

a = -7

b = 700

c = 0

We have that if a<0 then the vertex is a maximum value. In this case, a = -7, therefore the function has a maximum.

To find the maximum, we find the coordinate of the vertex, which is given by:

[tex]x_{vertex}=-\frac{b}{2a}[/tex]

Substitute a and b:

[tex]x_{vertex}=-\frac{700}{2(-7)}=-\frac{700}{-14}=50[/tex]

And we find y for the vertex:

[tex]\begin{gathered} y_{vertex}=-7(50)^2+700(50)=-7(2500)+35000=-17500+35000 \\ =17500 \end{gathered}[/tex]

The vertex of the parabola is: (50, 17500) therefore the maximum is (50, 17500)

Answer:

maximum: (50, 17500)

minimum: none