Respuesta :

The given triangle in the question is a right-angled triangle. In order to get the length of each side, we will apply the Pythagoras theorem.

The Pythagoras theorem is,

[tex]\text{Hypotenuse}^2=Opposite^2+Adjacent^2[/tex]

Where,

[tex]\begin{gathered} \text{Hypotenuse}=5 \\ \text{Opposite}=2x-2 \\ \text{Adjacent}=x \end{gathered}[/tex]

Therefore,

[tex]5^2=(2x-2)^2+x^2[/tex]

Let us expand the above

[tex]\begin{gathered} 25=2x(2x-2)-2(2x-2)+x^2 \\ 25=4x^2-4x-4x+4+x^2 \\ 25=5x^2-8x+4 \end{gathered}[/tex]

Switch sides

[tex]5x^2-8x+4=25[/tex]

Subtract 25 from both sides

[tex]5x^2-8x+4-25=25-25[/tex]

Simplify

[tex]5x^2-8x-21=0[/tex]

Solve with the quadratic formula

[tex]x_{1,\: 2}=\frac{-\left(-8\right)\pm\sqrt{\left(-8\right)^2-4\cdot\:5\left(-21\right)}}{2\cdot\:5}[/tex]

Thus

[tex]\sqrt[]{(-8)^2-4\cdot\: 5(-21)}=22[/tex]

Therefore,

[tex]x_{1,\: 2}=\frac{-\left(-8\right)\pm\:22}{2\cdot\:5}[/tex]

Separate the solutions

[tex]x_1=\frac{-\left(-8\right)+22}{2\cdot\:5},\: x_2=\frac{-\left(-8\right)-22}{2\cdot\:5}[/tex]

Hence,

[tex]\begin{gathered} x=\frac{-(-8)+22}{2\cdot\: 5}=3 \\ x=\frac{-(-8)-22}{2\cdot\: 5}=-\frac{7}{5} \end{gathered}[/tex]

The solutions to the quadratic equations are

[tex]x=3,\: x=-\frac{7}{5}[/tex]

Therefore, from the above result, the length of a triangle can never be negative.

Hence, x = 3

Let us now solve the length of the remaining side

[tex]\begin{gathered} 2x-2=2(3)-2=6-2=4 \\ \therefore2x-2=4 \end{gathered}[/tex]

Therefore, the length of each leg is

[tex]3ft,4ft,5ft[/tex]