Respuesta :

[tex]h(x)=\frac{3}{4}x-72[/tex]

To find the zero of a function, you equal that function to 0

[tex]\frac{3}{4}x-72=0[/tex]

Then, you solve the variable x:

1. Add 72 in both sides of the equation

[tex]\begin{gathered} \frac{3}{4}x-72+72=0+72 \\ \\ \frac{3}{4}x=72 \end{gathered}[/tex]

2. Multiply both sides of the equation by 4

[tex]\begin{gathered} 4(\frac{3}{4}x)=72\cdot4 \\ \\ 3x=288 \end{gathered}[/tex]

3. Divide both sides of the equation into 3

[tex]\begin{gathered} \frac{3}{3}x=\frac{288}{3} \\ \\ x=96 \end{gathered}[/tex]Then, the zero of the given function is in x=96. Coordinates (96,0)