The equation is given
[tex]y=sin^{-1}(\frac{x}{6})[/tex]y=0 and x=6.
RequiredTo determine the area of region bounded by courses of the equation given.
Explanation[tex]\begin{gathered} y=sin^{-1}(\frac{x}{6})\Rightarrow\Rightarrow siny=\frac{x}{6} \\ 6siny=x \end{gathered}[/tex][tex]x=6,y=0[/tex]Therefore
[tex]\begin{gathered} 6siny=6 \\ siny=1 \\ y=\frac{\pi}{2} \end{gathered}[/tex][tex]\begin{gathered} 6siny=0 \\ siny=0 \\ y=0,\pi \end{gathered}[/tex]Now integrate the equation.
[tex]\int_0^{\frac{\pi}{2}}(6-6siny)dy=(6y+6cosy)_0^{\frac{\pi}{2}}[/tex][tex](\frac{6\pi}{2}+6cos\frac{\pi}{2})-(6\times0+6cos0)=3\pi-6[/tex]AnswerHence the area of region bounded by the courses is
[tex]3\pi-6[/tex]