Given:
[tex]child\text{ dosage=}\frac{age\text{ of child in year }}{\text{age of child}+12}\times adult\text{ dosage}[/tex]
To determine: Child dosage given that
[tex]\begin{gathered} \text{age of chld = 10,} \\ \text{adult dosage = 328ml} \end{gathered}[/tex]
Solution:
In other to determine the child dosage, we would substitute the age of the child given and the adult dosage into the formula
[tex]\begin{gathered} child\text{ dosage=}\frac{age\text{ of child in year }}{\text{age of child}+12}\times adult\text{ dosage} \\ child\text{ dosage=}\frac{10}{10+12}\times328ml \\ child\text{ dosage=}\frac{10}{22}\times328ml \end{gathered}[/tex][tex]\begin{gathered} child\text{ dosage=}\frac{3280ml}{22} \\ child\text{ dosage=}149.090909ml \\ child\text{ dosage=}149.09ml(\text{nearest hundredth)} \end{gathered}[/tex]
Hence, a 10-year old child would receive to the nearest hundredth 149.09 ml