Respuesta :

The equation for car 2 is represented below as

[tex]y=55x[/tex]

Where,

[tex]\begin{gathered} x=\text{time (hours)} \\ y=\text{distance(miles)} \end{gathered}[/tex]

To calculate the average speed of each car, we will have to calculate the slope of the line

For car 2, when x= 1 hr

[tex]\begin{gathered} y=55x \\ y=55\times1 \\ y=55\text{miles} \end{gathered}[/tex]

When x=4 hrs,

[tex]\begin{gathered} y=55x \\ y=55\times4 \\ y=220\text{miles} \end{gathered}[/tex]

The average speed of car 2 will be calculated using the formula below

[tex]\begin{gathered} \text{Average spe}ed=\frac{change\text{ in distance}}{\text{change in time}} \\ \end{gathered}[/tex]

By substituting the values, we will have

[tex]\begin{gathered} \text{Average spe}ed=\frac{change\text{ in distance}}{\text{change in time}} \\ \text{Average spe}ed=\frac{220-55}{4-1} \\ \text{Average spe}ed=\frac{165\text{miles}}{3\text{hrs}} \\ \text{Average spe}ed=55\text{ miles/hr} \end{gathered}[/tex]

Hence,

The average speed of car 2 is 55 miles/hr

For car 1, when the value of x=1 hr

[tex]y=64\text{ miles}[/tex]

When the value of x = 4hrs

[tex]y=256\text{ miles}[/tex]

To calculate the average speed of Car 1 we will use the formula below

[tex]\begin{gathered} \text{Average spe}ed=\frac{change\text{ in distance}}{\text{change in time}} \\ \text{Average spe}ed\frac{=256-64}{4-1} \\ \text{Average spe}ed=\frac{192}{3} \\ \text{Average spe}ed=64\text{ miles/hr} \end{gathered}[/tex]

Hence,

The average speed of car 1 is 64 miles/hr

Therefore,

Car 1 is travelling at a greater speed