Respuesta :

we have the functions

[tex]f(x)=16x^2[/tex][tex]g(x)=\frac{1}{4}\sqrt[]{x}[/tex]

step 1

Find f(g(x))

[tex]f(g(x))=16(\frac{1}{4}\sqrt[]{x})^2[/tex]

simplify

[tex]f(g(x))=x[/tex]

therefore

Part 1

If x≥0 the value of f(g(x)) is x

step 2

Find g(f(x))

[tex]g(f(x))=\frac{1}{4}\sqrt[\square]{16x^2}[/tex]

simplify

[tex]g(f(x))=x[/tex]

therefore

Part 2

If x≥0 the value of g(f(x)) is the same as the first

step 3

Find the inverse of function f(x)

[tex]y=16x^2[/tex]

exchange the variables

[tex]x=16y^2[/tex]

isolate the variable y

[tex]\begin{gathered} y^2=\frac{x}{16} \\ y=\pm\frac{1}{4}\sqrt[\square]{x} \end{gathered}[/tex]

Part 3

the functions f(x) and g(x) are inverse functions