Respuesta :

[tex]-2x+y^2-2y+5=0[/tex]

The standard form is given by:

[tex]\begin{gathered} y=Ax^2+Bx+C \\ or \\ x=Ay^2+By+C \end{gathered}[/tex]

Therefore:

[tex]x=\frac{y^2}{2}-y+\frac{5}{2}[/tex]

The vertex is the point V(h,k) which is given by:

[tex]\begin{gathered} k=\frac{-b}{2a} \\ h=y(k) \\ ---- \\ k=-\frac{-1}{2(\frac{1}{2})}=1 \end{gathered}[/tex][tex]y(1)=\frac{1^2}{2}+-1+\frac{5}{2}=2=h[/tex]

Therefore, the vertex is:

[tex]V=(2,1)[/tex]

the focus is:

[tex](3,1)[/tex]

And the directrix is:

[tex]x=1[/tex]