Respuesta :

Given,

The expression is,

[tex]t_n=\frac{1}{2}(2)^{n-1}[/tex]

Required

The first five term of the sequence.

Taking n= 1 then,

[tex]t_1=\frac{1}{2}(2)^{1-1}=\frac{1}{2}[/tex]

Taking n= 2 then,

[tex]t_2=\frac{1}{2}(2)^{2-1}=\frac{1}{2}\times2=1[/tex]

Taking n= 3 then,

[tex]t_3=\frac{1}{2}(2)^{3-1}=\frac{1}{2}\times4=2[/tex]

Taking n= 4 then,

[tex]t_4=\frac{1}{2}(2)^{4-1}=\frac{1}{2}\times8=4[/tex]

Taking n= 5 then,

[tex]t_5=\frac{1}{2}(2)^{5-1}=\frac{1}{2}\times16=8[/tex]

Hence, the first five term of the sequence is 1/2, 1,2, 4, 8.