Respuesta :

Given:

volume = 1928π m^3

And the formula of the volume for the sphere is:

[tex]V=\frac{4}{3}\pi r^3[/tex]

Substitute the value of the volume:

[tex]1928\pi=\frac{4}{3}\pi r^3[/tex]

Simplify:

[tex]\begin{gathered} 1928\pi\cdot\frac{3}{4\pi}=\frac{4}{3}\pi r^3\cdot\frac{3}{4\pi} \\ \frac{5784}{4}=r^3 \\ r^3=1446 \end{gathered}[/tex]

And solve for r:

[tex]r=\sqrt[3]{1446}=11.31[/tex]

Next, the surface area is given by:

[tex]SA=4\pi r^2[/tex]

Substitute the values:

[tex]SA=4(3.14)(11.31)^2=1606.9[/tex]

Answer: 1606.9 m^2