Respuesta :

Given:

[tex]\left(x\right)=\left(4x^2-11\right)^3andg\left(x\right)=4x^2-11.[/tex]

Required:

Find h(x) if

[tex]f\mleft(x\mright)=h°g\left(x\right)[/tex]

Explanation:

[tex]\begin{gathered} f\mleft(x\mright)=h°g\left(x\right) \\ f\mleft(x\mright)=h(g(x)) \end{gathered}[/tex]

Let g(x) = x

[tex]f(x)=h(x)[/tex][tex](4x^2-11)^3=x^3[/tex]

Solve by taking cube root on both sides.

[tex]x=4x^2-11[/tex][tex]\begin{gathered} g(x)=x \\ g(x)=4x^2-11 \end{gathered}[/tex]