Hello, will you please tell me how to solve step by step? This is evaluating functions from an equation. We have: f(x)=x2 + 3 (that is x squared) g(x)=x + 1 h(x)=2How do I solve these? 1. f(g(2))=2. g(f)(0))=3. f(g(h(1)))=4. f(y)=5. g(w)=6. h(z)=

Respuesta :

[tex]\begin{gathered} f(x)=x^2+3 \\ g(x)=x+1 \\ h(x)=2 \end{gathered}[/tex]

1. f(g(2))

Find g(2); evaluate g for x=2

[tex]\begin{gathered} g(2)=2+1 \\ g(2)=3 \end{gathered}[/tex]

Find f(g(2)) or f(3)

[tex]\begin{gathered} f(g(2))=f(3)=3^2+3 \\ f(g(2))=9+3 \\ f(g(2))=12 \end{gathered}[/tex]

2. g(f(0))

Find f(0)

[tex]\begin{gathered} f(0)=0^2+3 \\ f(0)=3 \end{gathered}[/tex]

Find g(f(0)) or g(3)

[tex]\begin{gathered} g(f(0))=g(3)=3+1 \\ g(f(0))=4 \end{gathered}[/tex]

3. f(g(h(1)))

Find h(1): (All the values of h are euqual to 2

[tex]h(1)=2[/tex]

Find g(h(1)) or g(2):

[tex]g(2)=3[/tex]

Find f(g(h(1))) or f(3):

[tex]\begin{gathered} f(g(h(1)))=f(3) \\ f(g(h(1)))=12 \end{gathered}[/tex]

4. f(y); substitute the x in f by y:

[tex]f(y)=y^2+3[/tex]

5. g(w); substitute the x in g by w:

[tex]g(w)=w+1[/tex]

6. h(z); substitute the x in h by z:

[tex]h(z)=2[/tex]