The given expression:
[tex]\frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8[/tex]To simplify the expression :
Group the similar terms together :
[tex]\frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8=\frac{4}{9}z-\frac{3}{9}z-\frac{5}{9}z+5-8[/tex]
Simplify the similar terms together :
[tex]\begin{gathered} \frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8=\frac{4}{9}z-\frac{3}{9}z-\frac{5}{9}z+5-8 \\ \frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8=(\frac{4}{9}z-\frac{3}{9}z-\frac{5}{9}z)+5-8 \\ LCM\text{ of 9,9,9 is 9 So:} \\ \frac{4}{9}z-\frac{3}{9}z-\frac{5}{9}z=\frac{4-3-5}{9}z \\ \frac{4}{9}z-\frac{3}{9}z-\frac{5}{9}z=\frac{-4}{9}z \\ \text{Substitute the value of fraction addition:} \\ \frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8=-\frac{4}{9}z+5-8 \\ \text{ Since, 5-8= (-3)} \\ \frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8=-\frac{4}{9}z-3 \end{gathered}[/tex]
So, :
[tex]\frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8=-\frac{4}{9}z-3[/tex]
Answer :
[tex]\frac{4}{9}z-\frac{3}{9}z+5-\frac{5}{9}z-8=-\frac{4}{9}z-3[/tex]