EXPLANATION
We have μ = 144 and sd = 13
Computing the needed probabilities:
a) P(x < 137 ) =
[tex]=P(\frac{X-\mu}{\sigma}<\frac{137-\mu}{\sigma})[/tex][tex]=P({Z}\lt\frac{137-143}{13})[/tex][tex]=P(z<-0.4615[/tex][tex]=0.3228[/tex]a) The probability is 0.3228
b) Number of runners ---> n=10
P(x < 137 ) =
[tex]=P(\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{137-\mu}{\frac{\sigma}{\sqrt{n}}})[/tex][tex]=P({Z}\lt\frac{137-143}{\frac{13}{\sqrt{10}}})[/tex][tex]=P(z<-1.4595)[/tex][tex]=0.0735[/tex]b) The probability is 0.0735
c) Number of runners ---> n=50
P(x < 137 ) =
[tex]=P(\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}<\frac{137-\mu}{\frac{\sigma}{\sqrt{n}}})[/tex][tex]=P({Z}\lt\frac{137-143}{\frac{13}{\sqrt{50}}})[/tex][tex]=P(z<-3.2635)[/tex][tex]\approx0.0006[/tex]b) The probability is approximately 0.0006