Respuesta :

Answer:

[tex]\begin{gathered} a)\text{ Wind chill}=-31\text{ degrees Fahrenheit} \\ b)_{}\text{ Wind chill}=33.7\text{ degrees Fahrenheit} \end{gathered}[/tex]

Step-by-step explanation:

Given the equation that represents the feeling of the wind on a cold day, substitute the velocity and temperature respectively.

a) substitute T=-6 and V=23 mi/hr

[tex]\begin{gathered} \text{ Wind chill}=35.74+0.6215T-35.75(V^{0.16})+0.4275T(V^{0.16}) \\ \text{ Wind chill}=35.74+0.6215(-6)-35.75((23)^{0.16})+0.4275T((23)^{0.16}) \\ \text{ Wind chill}=-31\text{ degrees Fahrenheit} \end{gathered}[/tex]

b) substitute T=4.8 and v=19 km/hr

Since the equation is given in Fahrenheit and miles per hour, so we need to convert the given values:

[tex]\begin{gathered} \mleft(4.8\degree C\times\frac{9}{5}\mright)+32=40.64\degree F \\ T=40.64\text{ }\degree F \\ v=19\text{ }\frac{km}{hr} \\ v=\text{ }11.8\text{ }\frac{km}{hr} \end{gathered}[/tex]

Therefore,

[tex]\begin{gathered} \text{ Wind chill}=35.74+0.6215(40.64)-35.75((11.8)^{0.16})+0.4275(40.64)((11.8)^{0.16}) \\ \text{ Wind chill}=33.7\text{ degrees Fahrenheit} \end{gathered}[/tex]