Select one or more expressions that together represent all solutions to the equation. Your answer shouldbe in degrees. Assume n is any integer.8 sin(8x) + 9 = 3Choose all answers that apply:--48.59° + n. 180°-16.43° + n. 45--6.07° + n. 45-6.07° + n. 180

Respuesta :

ANSWER

[tex]x=-6.07\degree+n\cdot45\degree[/tex]

EXPLANATION

We want to solve the trigonometric equation given:

[tex]8\sin (8x)+9=3[/tex]

First, subtract 9 from both sides of the equation:

[tex]\begin{gathered} 8\sin (8x)=3-9 \\ 8\sin (8x)=-6 \end{gathered}[/tex]

Then, divide both sides by 8:

[tex]\begin{gathered} \sin (8x)=-\frac{6}{8} \\ \sin (8x)=-\frac{3}{4} \end{gathered}[/tex]

Now, apply the trigonometric inverse property i.e. find the sine inverse of both sides of the equation:

[tex]\begin{gathered} 8x=\sin ^{-1}(-\frac{3}{4})+360n \\ 8x=-48.5904+360n \end{gathered}[/tex]

where n = 0, 1, 2, 3. . .

Finally, divide both sides by 8:

[tex]\begin{gathered} x=\frac{-48.5904}{8}+\frac{360n}{8} \\ x=-6.07\degree+n\cdot45\degree \end{gathered}[/tex]

That is the answer.

Otras preguntas