DRAG each expression to show if it is equivalent to 7^5, 5^7, 5x7, or none.

The expand form of exponent is :
[tex]\begin{gathered} a\times a\times a\times a\times a\times a=a^6 \\ \text{Number of the times the digit get multiply is equal to the exponent value,} \end{gathered}[/tex]The expand form of Multiplication is :
[tex]\begin{gathered} a+a+a+a+a+a=6a \\ \text{Number of the time the digit gets added multiply that number with the digit} \end{gathered}[/tex]So,
1). Expression :
[tex]\begin{gathered} 5\times5\times5\times5\times5\times5\times5 \\ \text{Apply the statement of Exponent} \\ 5\times5\times5\times5\times5\times5\times5=5^7 \end{gathered}[/tex]So, the first expression drop on the second block,
2). Expression :
[tex]\begin{gathered} 7\times7\times7\times7\times7 \\ \text{Apply the statement of Exponent } \\ 7\times7\times7\times7\times7=7^5 \end{gathered}[/tex]So, the second expression drop in the first block
3). Expression :
[tex]\begin{gathered} 5+5+5+5+5+5+5 \\ \text{apply the expression of multiplication} \\ 5+5+5+5+5+5+5=5\times7 \end{gathered}[/tex]So, the third expression drop in the third block
4). Expression :
[tex]\begin{gathered} 5\times5\times5\times5\times5 \\ \text{Apply the statement of Multiplication} \\ 5\times5\times5\times5\times5=5^5 \end{gathered}[/tex]The fourth