Respuesta :

Solution

Given the equation

[tex]y=-\frac{5}{4}x+\frac{11}{4}[/tex]

Here, the radient is;

[tex]m=-\frac{5}{4}[/tex]

Since the line in question is perpendicular to the given line,

The product of their gradient mst be -1

[tex]\begin{gathered} m_1\times m=-1 \\ \\ \Rightarrow m_1=-\frac{1}{m} \\ \\ \text{ since }m=-\frac{5}{4} \\ \\ \Rightarrow m_1=-\frac{1}{-\frac{5}{4}}=\frac{4}{5} \end{gathered}[/tex]

Therefore, the gradient of the line in questin is 4/5

Since the line passes trough the poinyt (0, 7)

[tex]\begin{gathered} \Rightarrow\frac{y_-y_1}{x-x_1}=m \\ \\ \Rightarrow\frac{y-7}{x-0}=\frac{4}{5} \\ \\ \Rightarrow\frac{y-7}{x}=\frac{4}{5} \\ \\ \Rightarrow y-7=\frac{4}{5}x \\ \\ \Rightarrow y=\frac{4}{5}x+7 \end{gathered}[/tex]

Hence, the correct option is A.