Suppose that the function h is defined, for all real numbers, as follows.Find h(- 4), h(- 1) , and h(0) .h(x)= -2&if x<=-1\\ (x+1)^ 2 &if-1=2

The piecewise function is given as shown below:
[tex]h(x)=\begin{cases}{-2,\text{ }if\text{ }x\leq-1} \\ {(x+1)^2,\text{ }if\text{ }-1QUESTION 1: h(-4)-4 satisfies the interval:
[tex]\begin{gathered} x\leq-1 \\ -4\leq-1 \end{gathered}[/tex]Therefore,
[tex]h(-4)=-2[/tex]QUESTION 2: h(-1)
-1 satisfies the interval:
[tex]\begin{gathered} x\leq-1 \\ -1\leq-1 \end{gathered}[/tex]Therefore,
[tex]h(-1)=-2[/tex]QUESTION 3: h(0)
0 satisfies the interval:
[tex]\begin{gathered} -1Therefore,[tex]\begin{gathered} h(0)=(0+1)^2=1^2 \\ h(0)=1 \end{gathered}[/tex]