Respuesta :

The general form of the exponential function is:

[tex]f(x)=a\cdot b^x[/tex]

we will find the equation of the exponential function which passes through the points (0, 36) and (2, 1)

So,

when x = 0, f(0) = 36

[tex]\begin{gathered} 36=a\cdot b^0 \\ 36=a\cdot1 \\ a=36 \end{gathered}[/tex]

and when x = 2, f(x) = 1

Using the substitution with a = 36

So,

[tex]\begin{gathered} 1=36\cdot b^2 \\ b^2=\frac{1}{36} \\ \\ b=\sqrt[]{\frac{1}{36}}=\frac{1}{6} \end{gathered}[/tex]

So, the answer will be the equation of the function is:

[tex]f(x)=36\cdot(\frac{1}{6})^x[/tex]

Otras preguntas