Respuesta :

Step1: Pick 2 points in the table:

(0,6) and (4,10)

Step2: Recall the formula for the slope of a line.

[tex]\text{Slope =}\frac{y_2-y_1}{x_2-x_1}[/tex]

Step3: Substitute the values of the coordinates in the above formula.

[tex]\begin{gathered} (0,6)\Rightarrow x_1=0;y_1=6 \\ (4,10)\Rightarrow x_2=4;y_2=10 \end{gathered}[/tex]

Step4:

[tex]\text{Slope =}\frac{10-6}{4-0}=\frac{4}{4}=1[/tex]

Step5: Invoke the formula for the equation of the line.

[tex]\begin{gathered} y-y_1=slope(x-x_1) \\ y-6=1(x-0) \\ y-6=x \\ y=x+6 \end{gathered}[/tex]

Hence, the correct answer is y = x + 6