given the function: f(x)=x^2-2x. how can you restrict the domain so that f(x) has an inverse? what is the equation of the inverse function?

Respuesta :

Solution

We have the following equation given:

[tex]y=x^2-2x=x(x-2)[/tex]

For this case we can do the following:

[tex]x=y^2-2y=y(y-2)[/tex]

We can solve for the quadratic equation and we got:

[tex]y=\frac{-(-2)\pm\sqrt[]{(-2)^2-4(1\cdot-x)}}{2\cdot1}=\frac{2\pm\sqrt[]{4\cdot(1+x)}}{2}=1\pm\sqrt[]{1+x}[/tex]

The two solutions are:

[tex]y_1=1-\sqrt[]{1+x},y_2=1+\sqrt[]{1+x}[/tex]

Then the answer is:

Part 1

[tex]x\ge1[/tex]

Part 2

[tex]f^{-1}(x)=1+\sqrt[]{1+x}[/tex]