q(x) = -x + 2r(x) = 4x + 3the following.(q.r)(-4) = (r.a) (-4) =

Function composition:
[tex]\begin{gathered} (q\circ r)(x)=q(r(x)) \\ (r\circ q)(x)=r(q(x)) \end{gathered}[/tex]To find the given:
[tex](q\circ r)(-4)=[/tex]1. Substitute in the equation of function q(x) the x by the equation of function r(x):
[tex](q\circ r)(x)=-(4x+3)+2[/tex]2. Simplify:
[tex]\begin{gathered} (q\circ r)(x)=-4x-3+2 \\ (q\circ r)(x)=-4x-1 \end{gathered}[/tex]3. Evaluate the equation you get in step 2 when x= -4:
[tex]\begin{gathered} (q\circ r)(-4)=-4(-4)-1 \\ (q\circ r)(-4)=16-1 \\ \\ (q\circ r)(-4)=15 \end{gathered}[/tex]_____________________________--
[tex](r\circ q)(-4)=[/tex]1.
[tex](r\circ q)(x)=4(-x+2)+3[/tex]2.
[tex]\begin{gathered} (r\circ q)(x)=-4x+8+3 \\ (r\circ q)(x)=-4x+11 \end{gathered}[/tex]3.
[tex]\begin{gathered} (r\circ q)(-4)=-4(-4)+11 \\ (r\circ q)(-4)=16+11 \\ \\ (r\circ q)(-4)=27 \end{gathered}[/tex]Answe:
(